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Figure 1: The proposed Point-Voxel Diffusion (PVD) is a new framework for generative modeling of 3D shapes. Left: tables, cars, and
planes generated by our PVD. It learns to sample from a Gaussian prior and to progressively remove noise to obtain sharp shapes. Right:
two possible shapes completed from a real RGB-D image, each visualized in input and canonical views.

Abstract

We propose a novel approach for probabilistic genera-
tive modeling of 3D shapes. Unlike most existing models
that learn to deterministically translate a latent vector to a
shape, our model, Point-Voxel Diffusion (PVD), is a unified,
probabilistic formulation for unconditional shape genera-
tion and conditional, multi-modal shape completion. PVD
marries denoising diffusion models with the hybrid, point-
voxel representation of 3D shapes. It can be viewed as a
series of denoising steps, reversing the diffusion process
from observed point cloud data to Gaussian noise, and is
trained by optimizing a variational lower bound to the (con-
ditional) likelihood function. Experiments demonstrate that
PVD is capable of synthesizing high-fidelity shapes, com-
pleting partial point clouds, and generating multiple com-
pletion results from single-view depth scans of real objects.

1. Introduction
Generative modeling of 3D shapes has extensive appli-

cations across vision, graphics, and robotics. To perform
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well in these downstream applications, a good 3D genera-
tive models should be faithful and probabilistic. A faith-
ful model generates shapes that are realistic to humans and,
in cases where conditional inputs such as depth maps are
available, respects such partial observations. A probabilis-
tic model captures the under-determined, multi-modal na-
ture of the generation and completion problem: it may sam-
ple and produce diverse shapes from scratch or from partial
observations. As shown in Figure 1, when only the back of
a chair is visible, good generative models should be able to
produce multiple possible completed chairs, including those
with arms and those without.

Existing shape generation models can be roughly di-
vided into two categories. The first operates on 3D vox-
els [43, 14, 45, 2], a natural extension of 2D pixels.
While being straightforward to use, voxels demand pro-
hibitively large memory when scaled to high dimensions,
and are thus unlikely to produce results with high fidelity.
The second class of models studies point cloud genera-
tion [1, 11, 48, 46, 16, 17] and has produced promising re-
sults. While being more faithful, these approaches typically
view point cloud generation as a point generation process
conditioned on shape encoding, which is obtained by de-
terministic encoders. When performing shape completion,
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these approaches are therefore unable to capture the multi-
modal nature of the completion problem.

Recently, a new class of generative models, named prob-
abilistic diffusion models, have achieved impressive perfor-
mance on 2D image generation [35, 13, 36]. These ap-
proaches learn a probabilistic model over a denoising pro-
cess. Diffusion is supervised to gradually denoise a Gaus-
sian noise to a target output, such as an image. Methods
along this line, such as DDPM [13], are inherently proba-
bilistic and produce highly realistic 2D images.

Extending diffusion models to 3D is, however, techni-
cally highly nontrivial: a direct application of diffusion
models on either voxel and point representation results in
poor generation quality. This is because, first, pure vox-
els are binary and therefore not suitable for the proba-
bilistic nature of diffusion models; second, point clouds
demand permutation-invariance, which imposes infeasible
constraints on the model. Experiments in Section 4.1 also
verifies that a straightforward extension does not lead to rea-
sonable results.

We propose Point-Voxel Diffusion (PVD), a proba-
bilistic and flexible shape generation model that tack-
les the above challenges by marrying denoising diffusion
models with the hybrid, point-voxel representation of 3D
shapes [24]. A point-voxel representation builds structured
locality into point cloud processing; integrated with denois-
ing diffusion models, PVD suggests a novel, probabilistic
way to generate high-quality shapes by denoising a Gaus-
sian noise and to produce multiple completion results from
a partial observation, as shown in Figure 1.

A unique strength of PVD is that it is a unified, proba-
bilistic formulation for unconditional shape generation and
conditional, multi-modal shape completion. While multi-
modal shape completion is a highly desirable feature in
applications such as digital design or robotics, past works
on shape generation primarily use deterministic shape en-
coders and decoders to output a single possible completion
in voxels or a point cloud. In contrast, PVD can perform
both unconditional shape generation and conditional shape
completion in an integrated framework, requiring only min-
imal modifications to the training objective. It is thus capa-
ble of sampling multiple completion results depending on
diffusion initialization.

Experiments demonstrate that PVD is capable of syn-
thesizing high-fidelity shapes, outperforming multiple state-
of-the-art methods. PVD also delivers high-quality results
on multi-modal shape completion from partial observations
such as a partial point cloud or a depth map. In partic-
ular, we show that PVD does well on multi-modal com-
pletion on multiple synthetic and real datasets, including
ShapeNet [4], PartNet [27], and single-view depth scans of
real objects in the Redwood dataset [5].

2. Related Works

Point cloud generative models. Many prior works
have explored point cloud generation in terms of auto-
encoding [1, 11, 47], single-view reconstruction [12, 10,
18, 17], and adversarial generation [34, 48, 40]. Many of
them rely on directly optimizing heuristic loss functions
such as Chamfer Distance (CD) and Earth Mover’s Distance
(EMD), which are also used to evaluate generative quality.

Some recent works take a different approach, view-
ing the 3D point clouds in light of probabilistic distri-
butions. For example, Sun et al. [37] view the point
clouds from a probabilistic perspective and introduce au-
toregressive generation, but doing so requires ordering of
the point clouds. GAN-based models and flow-based mod-
els [21, 1, 46, 16, 17] also adopt a probabilistic view but
separate shape-level distribution from point-level distribu-
tion. Among these models, PointFlow applies normalizing
flow [29] to 3D point clouds, and Discrete PointFlow fol-
lows up using discrete normalizing flow with affine cou-
pling layers [8]. Shape Gradient Fields [3], unlike flow-
based works, directly learn a gradient field that samples
point clouds using Langevin dynamics. Our model is dif-
ferent from these models in that we do not distinguish point
and shape distributions, and that we directly generate entire
shapes starting from random noise.

Point-voxel representation. 3D shapes were convention-
ally rasterized into voxel grids and processed using 3D con-
volution [6, 42]. Due to the correspondence between vox-
els and 2D pixels, many works have explored voxel-based
classification and segmentation using volumetric convolu-
tion [26, 31, 19, 39, 42, 7]. Voxel-based generative mod-
els have similarly proven successful [43, 14, 45]. However,
voxel grids are memory-intensive and they grow cubically
with increase in dimension, so they cannot be scaled to a
high resolution.

Point clouds, on the other hand, are detailed samples
from smooth surfaces and do not suffer from the grid effect
of usually low-resolution voxels and do not require as much
memory for processing. Researchers have explored point
cloud classification and segmentation [30, 30, 41] and most
assume point cloud processing networks are permutation-
invariant. Permutation-invariance is a strong condition to
be imposed on the architecture and we empirically find
that direct extension of 2D methods to either permutation-
invariant point clouds or voxels do not work well. We there-
fore explore a separate point-voxel representation [22, 33],
and our work is most related to point-voxel CNN [24],
which proposes to voxelize the point clouds for 3D convolu-
tion. We use it as the backbone of our generative model due
to its exploitation of the strong spacial correlation inherent
in point cloud data.



Figure 2: Visualization of the diffusion and generative process. To
generate, Gaussian noise is sampled from p(xT ) and noise is pro-
gressively removed by pθ(xt|xt+1). Symmetrically, the diffusion
process gradually adds noise by q(xt+1|xt). We utilize a closed-
form expression for each q(xt+1|xt), allowing pθ(xt|xt+1) to be
learned by simply matching the posterior q(xt|xt+1,x0) of the
corresponding forward transition probability.

Energy-based models and denoising diffusion models.
Energy-based models (EBMs) and denoising diffusion
models are two classes of generative models that formu-
late generation as an iterative refinement procedure. Energy
based models [20, 9, 28] learn an energy landscape over
input data, where local minima correspond to high-fidelity
samples, which are obtained by Langevin dynamics [9, 28].
In contrast, denoising diffusion models [35, 13, 36] learn a
probabilistic model over a denoising process on inputs. Dif-
fusion is supervised to gradually denoise a Gaussian noise
to a target output. This form of supervision can be seen
as supervision of the gradient of a log probability distribu-
tion [36] as in score matching EBM [15, 38]. Our work
builds on these related existing approaches and we explore
the 3D domain, which is challenging and fundamentally dif-
ferent from 2D images. A concurrent work on point cloud
diffusion model [25] views point cloud generation as a con-
ditional generation problem and uses an additional encoder
for shape latents. Ours, however, adopts an unconditional
approach, ridding the need for additional shape encoders,
and uses a different hybrid, point-voxel representation for
processing shapes. In addition to generating high-quality
3D shapes, we also show that our model can be modified
with no architectural change to perform on conditional gen-
eration tasks such as shape completion. We also demon-
strate its effectiveness on real-world scans.

3. Point-Voxel Diffusion

In this section we introduce Point-Voxel Diffusion
(PVD), a denoising diffusion probabilistic model for 3D
point clouds. We start by describing our formulation, fol-
lowed by the training objective for shape generation, and
end with the modified objective we proposed for shape com-
pletion from partial observation. For all our discussions be-
low, we assume each of our data points are a set of N points
with xyz-coordinates and is denoted as x ∈ RN×3. Our

model is parameterized as a single point-voxel CNN [24].

3.1. Formulation

The denoising diffusion probabilistic model is a genera-
tive model where generation is modeled as a denoising pro-
cess. Starting from Gaussian noise, denoising is performed
until a sharp shape is formed. In particular, the denoising
process produces a series of shape variables with decreas-
ing levels of noise, denoted as xT ,xT−1, ...,x0, where xT

is sampled from a Gaussian prior and x0 is the final output.
To learn our generative model, we define a ground truth

diffusion distribution q(x0:T ) (defined by gradually adding
Gaussian noise to the ground truth shape), and learn a diffu-
sion model pθ(x0:T ), which aims to invert the noise corrup-
tion process. We factor both probability distributions into
products of Markov transition probabilities:

q(x0:T ) = q(x0)

T∏
t=1

q(xt|xt−1),

pθ(x0:T ) = p(xT )

T∏
t=1

pθ(xt−1|xt),

(1)

where q(x0) is the data distribution and p(xT ) is a stan-
dard Gaussian prior. Here, q(xt|xt−1) is named the forward
process, diffusing data into noise; accordingly, q(xt−1|xt)
is named the reverse process. pθ(xt−1|xt) is named the
generative process, which we learn, that generates realis-
tic samples by approximates the reverse process. To enable
closed-form evaluation, the transition probabilities are also
parameterized as Gaussian distributions. We illustrate the
processes in Figure 2. Given a pre-determined increasing
sequence of Gaussian noise values β1, ..., βT ,1 each transi-
tion probability can be defined as

q(xt|xt−1) := N (
√
1− βtxt−1, βtI),

pθ(xt−1|xt) := N (µθ(xt, t), σ
2
t I).

(2)

, where µθ(xt, t) represents the predicted shape from our
generative model at timestep t − 1. Empirically, we found
that setting σ2

t = βt works well. Intuitively, the forward
process can be seen as gradually injecting more random
noise to the data, with the generative process learning to
progressively remove noise to obtain realistic samples by
mimicking the reverse process.

Training objective. To learn the marginal likelihood
pθ(x), we maximize a variational lower bound of log data
likelihood that involves all of x0, ...,xT :1

Eq(x0)[log pθ(x0)] ≥ Eq(x0:T )

[
log

pθ(x0:T )

q(x1:T |x0)

]
. (3)

1We leave derivation and implementation details to Appendix.



In the above objective, the forward process q(xt|xt−1) is
fixed and p(xT ) is defined as a Gaussian prior, so they do
not affect the learning of θ. Therefore, the final objective
can be reduced to maximum likelihood given the complete
data likelihood with joint posterior q(x1:T |x0):

max
θ

Ex0∼q(x0),x1:T∼q(x1:T |x0)

[
T∑

t=1

log pθ(xt−1|xt)

]
.

(4)
Joint posterior q(x1:T |x0) can be factorized into∏T
t=1 q(xt−1|xt,x0). Each factored ground-truth posterior

is denoted as q(xt−1|xt,x0) and is analytically tractable.
It can be shown that it is also parameterized by Gaussian
distributions:

q(xt−1|xt,x0) =

N
(√

α̃t−1βt

1− α̃t
x0 +

√
αt(1− α̃t−1)

1− α̃t
xt,

(1− α̃t−1)

1− α̃t
βtI

)
.

(5)
where αt = 1 − βt and α̃t =

∏t
s=1 αs.1 This prop-

erty allows each timestep to learn independently, i.e., each
pθ(xt−1|xt) only needs to match q(xt−1|xt,x0).

Since both pθ(xt−1|xt) and q(xt−1|xt,x0) are Gaus-
sian, we can reparameterize the model to output noise and
the final loss can be reduced to an L2 loss between the
model output ϵθ(xt, t) and noise ϵ:1

∥ϵ− ϵθ(xt, t)∥2 , ϵ ∼ N (0, I), (6)

Intuitively, the model seeks to predict the noise vector nec-
essary to decorrupt the 3D shape.

Point clouds can then be generated by progressively sam-
pling from pθ(xt−1|xt) as t = T, ..., 1 using the following
equation:

xt−1 =
1

√
αt

(
xt −

1− αt√
1− α̃t

ϵθ(xt, t)

)
+
√
βtz, (7)

where z ∼ N (0, I), corresponding to the gradual denoising
of a shape from noise.1

3.2. Shape Completion

Our objective can be simply modified to learn a condi-
tional generative model given partial shapes, which we in-
troduce in this section.

Denote a point cloud sample as x0 = (z0, x̃0), where
z0 ∈ RM×3 is the fixed partial shape, and any intermediate
shapes as free points xt = (z0, x̃t). We can then define a
conditional forward process, where the partial shape is fixed
at z0 for all time. Our conditional forward and generative
processes, as well as each transition probability, can then be
parametrized as

q(x̃t|x̃t−1, z0) := N (
√

1− βtx̃t−1, βtI),

pθ(x̃t−1|x̃t, z0) := N (µθ(xt, z0, t), σ
2
t I).

(8)

Note that the above equations now give the for-
ward/generative transition probabilities for the free points
x̃t, while z0 stays unchanged for all timesteps. Intuitively,
this process is the same as unconditional generation, while
we hold the partial shape z0 fixed and diffuse only the miss-
ing parts.

The modified training objective also maximizes the like-
lihood conditioned on partial shapes z0:

E(x̃0,z0)∼q(x0),x1:T∼q(x1:T |x̃0,z0)

[
T∑

t=1

log pθ(x̃t−1|x̃t, z0)

]
,

(9)
where each posterior q(x̃t−1|x̃t, x̃0, z0) is known and its
derivation is similar to the unconditional generative model.
Using the same reasoning as before, we can arrive at a sim-
ilar L2 loss:

Lt = ∥ϵ− ϵθ(x̃t, z0, t)∥2 , (10)

where ϵ ∼ N (0, I). Additionally, since the partial shape is
always fixed during both forward and generative processes,
we can mask away the subset of model output that affects
z0 and minimize L2 distance between ϵ̃(x̃t, z0, t) and ran-
dom noise, which only affects x̃t. In practice, we input z0
and xt into the model and obtain xt−1, where only the sub-
set x̃t−1 is used for L2 loss. In shape completion, x̃t−1 is
concatenated with z0 to be the input into the model again.
This allows the exact same training architecture to do both
generation and shape completion by simply changing the
training objective.

4. Experiments
We demonstrate here that our model outperforms pre-

vious point generative models in Section 4.1, is capable
of completing partial shapes sampled from single views in
Section 4.2, and can generate diverse shapes given partial
shape constraints in Section 4.3. Architecture and hyper-
parameter details are provided in Appendix.

4.1. Shape Generation

Data. We choose ShapeNet [4] Airplane, Chair, and Car
to be our main datasets for generation, following most pre-
vious works [46, 17, 3, 16]. We use the provided datasets
in [46], which contain 15,000 sampled points for each
shape. We sample 2,048 points for training and testing, re-
spectively, and process our data following procedures pro-
vided in PointFlow [46].

Evaluation metrics. Previous works such as [46, 17, 3,
16] have used Chamfer Distance (CD) and Earth Mover’s
Distance (EMD) as their distance metrics in calculating
Jensen-Shannon Divergence (JSD), Coverage (COV), Min-
imum Matching Distance (MMD), and 1-Nearest Neighbor
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Figure 3: Results on unconditional shape generation with 2,048 points. The l-GAN results are from the EMD variant.

Airplane Chair Car

CD EMD CD EMD CD EMD

r-GAN [1] 98.40 96.79 83.69 99.70 94.46 99.01
l-GAN (CD) [1] 87.30 93.95 68.58 83.84 66.49 88.78
l-GAN (EMD) [1] 89.49 76.91 71.90 64.65 71.16 66.19
PointFLow [46] 75.68 70.74 62.84 60.57 58.10 56.25
SoftFlow [16] 76.05 65.80 59.21 60.05 64.77 60.09
DPF-Net [17] 75.18 65.55 62.00 58.53 62.35 54.48
Shape-GF [3] 80.00 76.17 68.96 65.48 63.20 56.53
PVD (ours) 73.82 64.81 56.26 53.32 54.55 53.83

Table 1: Generation results on Airplane, Chair, Car compared with
baselines using 1-NN as the metric. Both CD and EMD as the dis-
tance measure are calculated. Lower scores indicate better quality
and diversity.

(1-NN), which are four main metrics to measure genera-
tive quality. However, as discussed by [46], JSD, COV, and
MMD each has limitations and does not necessarily indicate
better quality. Some generation results achieve even better
scores than ground-truth datasets. 1-NN is robust and cor-
relates with generation quality, as supported by [46], which
also proposes 1-NN as the better metric. Therefore, we use
1-NN directly for evaluating generation quality and we pro-
vide comparison of remaining metrics in Appendix. As we
also discover that EMD score can vary widely depending
on its implementation, We evaluate all baselines using our
implementation of the metrics.

Baselines and results. We quantitatively compare our re-
sults with r-GAN [1], l-GAN [1], PointFlow [46], DPF-
Net [17], SoftFlow [16], and Shape-GF [3] on generating
2048 points. In evaluating the baselines, we follow the same
data processing and evaluation procedure as PointFlow, and
follow the provided baseline implementations to evaluate
their models. Our comparisons are shown in Table 1. Our
model noticeably achieves the best generation quality.

We also investigated pure voxel and point representa-

tions for shape generation. We noticed that simply extend-
ing diffusion models to pure point representation using con-
ventional permutation-invariant architectures such as Point-
Net++ [32] fails to generate any visible shapes. Extend-
ing diffusion models to pure voxel representation generates
noisy results due to the binary nature of voxels which is dif-
ferent from our Gaussian assumption. We visually compare
with baselines including a voxel diffusion model (Vox-Diff)
in Figure 3. For Vox-Diff, 2048 points are sampled from
voxel surfaces. We provide additional quantitative compar-
ison in Appendix.

4.2. Shape Completion

In various graphics applications users usually do not
have access to all viewpoints of an object. A shape often
needs to be completed knowing a partial shape from a single
depth map. Therefore, the ability to complete partial shapes
become practically useful. In this section, we use the same
model architecture (see Appendix) from Section 4.1 and test
our shape completion models.

Data. For shape completion, we use the benchmark pro-
vided by GenRe [49], which contains renderings of each
shape in ShapeNet from 20 random views. We sample 200
points as our partial point clouds obtained from the provided
depth images, and we evaluate shape completion on all 20
partial shapes per ground-truth sample.

Metrics. For shape completion, as the ground-truth data
are involved, Chamfer Distance and Earth Mover’s Distance
suffice to evaluate the reconstruction results.

Baselines. Since our approach is probabilistic, we se-
lected major distribution-fitting models such as Point-
Flow [46], DPF-Net [17], and SoftFlow [16] for compari-
son. We directly evaluate pre-trained models, if provided,
otherwise we re-train them using baselines’ provided im-
plementation on our benchmark. We also compared with
Shape-GF as its encoder can similarly receive an arbitrary
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Figure 4: Our shape completion visualization (right) compared to baseline models (left). From left to right: depth images, ground-truth
shapes, partial shapes sampled from depth images, completion from baselines, and our results.

Category Model CD EMD

Airplane

SoftFlow [16] 0.4042 1.198
PointFlow [46] 0.4030 1.180
DPF-Net [17] 0.5279 1.105
PVD (ours) 0.4415 1.030

Chair

SoftFlow [16] 2.786 3.295
PointFlow [46] 2.707 3.649
DPF-Net [17] 2.763 3.320
PVD (ours) 3.211 2.939

Car

SoftFlow [16] 1.850 2.789
PointFlow [46] 1.803 2.851
DPF-Net [17] 1.396 2.318
PVD (ours) 1.774 2.146

Table 2: Quantitative comparison against baselines. CD is multi-
plied by 103 and EMD is multiplied by 102.

number of points. However, it is experimentally found that
the model is sensitive to the input partial shapes and com-
pletion is not realistic after Langevin sampling. Therefore,
we leave them out of the comparison.

Results. Quantitative results are presented in Table 2 and
a visual comparison is shown in Figure 4. From Table 2,
we observe that our model achieves best on EMD scores
while worse on CD compared to some baselines. First,
we note EMD is a better metric for measuring completion
quality because by solving the linear assignment problem
it forces model outputs to have the same density as the
ground-truths [23] and it is known that CD is blind to visual
inferiority [1]. Our better EMD score is more indicative of
higher visual quality.

Next, we investigate the reason our CD is inferior to our
baselines. We discover that a typical case when our CD
is higher is as shown in Figure 5, where from the input

GT PointFlow SoftFlow DPF-Net PVD (ours)

CD 8.633 1.501 1.197 1.921
EMD 1.124 1.856 1.109 0.919

Figure 5: Typical case when CD is higher than baseline models.
Column 1 shows input depth image and ground-truth point clouds.
The next columns show completion from the input viewpoint (top)
and from the canonical viewpoint (bottom). CD is multiplied by
103 and EMD is multiplied by 102 scores.

view the ground-truth shape is largely unknown. The base-
line models tend to output a mean shape when encountered
with such an unconventional angle. Naturally, mean shapes
are more frequently closer to the ground-truths than other
shapes, as exemplified by the figure. However, with each
noise initialization, our model seeks a possible completion
that matches well with the partial shape and may be further
away from the ground-truth than the mean shape. In the
case shown, our completion is a van instead of a sedan but
is equally realistic.

Our model also enables controlled completion given
multiple partial shapes, and we leave details to Appendix.

4.3. Multi-Modal Completion

Our baselines for shape completion adopt an encoder-
decoder structure that takes in a partial shape and outputs
a single completion. While some offer impressive results,
their completion ability is deterministic, much different
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Figure 6: Multi-modal completion visualization on PartNet. Each column presents five completion modes from a model.

TMD ×102 MMD ×103

Chair Table Lamp Avg. Chair Table Lamp Avg.

KNN-latent [44] 0.96 1.37 1.95 1.43 1.42 1.42 1.88 1.57
cGAN [44] 1.75 1.99 1.94 1.89 1.61 1.56 2.13 1.77
PVD (ours) 1.91 1.70 5.92 3.18 1.27 1.03 1.98 1.43

Table 3: Quantitative comparison for multi-modal completion on
PartNet. TMD (higher the better) measures completion diversity,
and MMD (lower the better) measures completion quality. Cham-
fer Distance (CD) is used as the distance measure.

from humans who can often imagine different completion
possibilities given single views. Our PVD, however, adopts
a probabilistic approach to shape completion, where each
noise initialization can result in a different completion.

Data. We follow experiment setups from cGAN [44] and
train our model on Chair, Table, and Lamp from Part-
Net [27]. 1024 points are given and 2048 points are
generated as completion. In addition, we show diver-
sity of our completion on ShapeNet. Different from Part-
Net, ShapeNet’s partial shapes are sampled from custom-
rendered depth images.

Metrics. We follow cGAN [44] and use Total Mutual Dif-
ference (TMD) to measure diversity and Minimal Matching
Distance (MMD) to measure quality with Chamfer Distance
(CD) as distance measure. Since our model is different from
cGAN and only completes the 1024 free points, TMD is
calculated only on the free points for our model and on a

subsampled set of 1024 points for our baselines. MMD is
calculated using the completed 2048 points and re-sampled
2048 ground-truth points.

Results on PartNet. Our model is compared with
cGAN [44] and KNN-latent [44]. Results are shown in Ta-
ble 3 and visual comparisons are shown in Figure 6. Our
model outperforms both baselines in terms of average di-
versity and quality.

Results on ShapeNet. The shape completion model
trained in Section 4.2 is directly used to demonstrate com-
pletion diversity on ShapeNet, as shown in Figure 7. We
choose a bottom view of a chair and show that, in the top
row, all of our completion results match well with the con-
strained viewpoint, and in the bottom row, our completion
results are noticeably diverse from the canonical viewpoint.

Results on real scans. We further investigate how our
model pre-trained on ShapeNet can perform on scans of
real objects. We use the Redwood 3DScans dataset [5]
and test our model on partial shapes of chairs and tables,
sampled from its depth images. Since the GenRe bench-
mark [49] does not provide table data, the training data for
the table category are generated by randomly sampling 20
views from ShapeNet meshes, following GenRe’s proce-
dure. Within each example, we present the real RGB-D
scans and ground-truths from the input views.

Figure 8 shows results on two views of two different
chairs and tables. For chair scans, the left example shows
the front view, and the completion results only vary slightly



Six possible completions by our PVD, each shown in two viewsInput depth map

Figure 7: Multi-modal completion results on ShapeNet. Left: ground-truth bottom view depth image of a chair. Right: six different
possible shape completion results. Top: completion from the depth image viewpoint. Bottom: completion from the canonical viewpoint.

RGB-D GT Completion Results RGB-D GT Completion Results

Figure 8: Application of our model on scans from the Redwood 3DScans dataset. PVD takes partial point clouds induced from the depth
maps, not the RGB image as input. Left: from a more complete view, the model outputs stable, similar completions. Right: from an
uncertain viewpoint, the model outputs multiple completions with a larger variation.

across different runs. The right chair example shows a back
view, and the uncertainty allows more varied completion.
Similarly, the left table scan shows a large part of the table,
so the completion varies less than the right example, which
only shows the top of the table.

5. Conclusion

We have introduced PVD, a unified framework for both
shape generation and shape completion. Our model, trained
on a simple L2 loss, is based on diffusion probabilistic mod-
els and learns to reverse a diffusion process by progressively
removing noise from noise-initialized samples. A minor
modification on the objective also results in a shape comple-
tion model without the need for any architectural change.
Experimentally, we show the failure with straight-forward

extension of diffusion models to either pure voxel or point
representations. With the point-voxel representation, our
model demonstrates superior generative power and impres-
sive shape completion quality. Unlike most baseline models
which use deterministic encoder-decoder structures, PVD
can output multiple possible completion results given a par-
tial shape. Additionally, it can complete real 3D scans, thus
offering practical usage in various downstream applications.
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