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Abstract
Current AI systems still fail to match the flexibility, robustness, and generaliz-
ability of human intelligence: how even a young child can manipulate objects to
achieve goals of their own invention or in cooperation, or can learn the essen-
tials of a complex new task within minutes. We need AI with such embodied
intelligence: transforming raw sensory inputs to rapidly build a rich understand-
ing of the world for seeing, finding, and constructing things, achieving goals,
and communicating with others. This problem of physical scene understand-
ing is challenging because it requires a holistic interpretation of scenes, objects,
and humans, including their geometry, physics, functionality, semantics, and
modes of interaction, building upon studies across vision, learning, graphics,
robotics, andAI.My research aims to address this problemby integrating bottom-
up recognition models, deep networks, and inference algorithms with top-down
structured graphical models, simulation engines, and probabilistic programs.

INTRODUCTION

I am fascinated by how rich and flexible human intelli-
gence is. From a quick glance at the scenes in Figure 1A,
we effortlessly recognize the 3D geometry and texture of
the objects within, reason about how they support each
other, and when they move, track, and predict their tra-
jectories. Stacking blocks, picking up fruits—we also plan
and interact with scenes and objects in many ways.
My research goal is to build machines that see, inter-

act with, and reason about the physical world just like
humans. This problem of physical scene understand-
ing involves the following three key topics that bridge
research in computer science, AI, robotics, cognitive sci-
ence, and neuroscience: Perception (Figure 1B): How can
structured, physical object, and scene representations arise
from raw, multimodal sensory input (e.g., videos, sound,
tactile signals)? Physical interactions (Figure 1C): How
can we build dynamics models that quickly adapt to
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complex, stochastic real-world scenarios, and how can
they contribute to planning and motor control? Model-
ing physical interactions helps robots build bridges from
a single image and play challenging games such as Jenga.
Reasoning (Figure 1D): How can physical models inte-
grate structured, often symbolic, priors such as symmetry
and repetition, and use them for commonsense reasoning?
Physical scene understanding is challenging because it

requires a holistic interpretation of scenes and objects,
including their 3D geometry, physics, functionality, and
modes of interaction, beyond the scope of a single dis-
cipline, such as computer vision. Structured priors and
representations of the physical world are essential: we
need proper representations and learning paradigms to
build data-efficient, flexible, and generalizable intelligent
systems that understand physical scenes.
My approach to constructing representations of the

physical world is to integrate bottom-up recognition mod-
els, deep networks, and efficient inference algorithms
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2 AI MAGAZINE

F IGURE 1 Physical scene
understanding involves (I) perception,
building physical object representations from
multimodal data, (II) physical interaction,
capturing scene dynamics for planning and
control, and (III) commonsense reasoning,
understanding high-level structured priors in
objects and scenes.

with top-down, structured graphical models, simulation
engines, and probabilistic programs. In my research, I
develop and extend techniques in these areas (e.g., propos-
ing new deep networks and physical simulators); I further
explore innovative ways to combine them, building upon
studies across vision, learning, graphics, and robotics. I
believe that only by exploiting knowledge from all these
areas can we build machines that have a human-like,
physical understanding of complex, real-world scenes.
My research is also highly interdisciplinary: I build

computational models with inspiration from human cog-
nition, developmental psychology, neuroscience, robotics,
and computational linguistics; I also explore how these
models can, in turn, assist in solving tasks in these fields.
Below I describe my research experience and future

plans on the three research topics.

LEARNING TO PERCEIVE THE PHYSICAL
WORLD

Motivated by human perception—rich, complex, gen-
eralizable, learning much from little—my research on
perception has been centered on building structured,
object-based models to characterize the appearance and
physics of daily objects and scenes. These models integrate
bottom-up deep recognition models with top-down simu-
lation engines, and they learn by perceiving and explaining
the physical world just like humans.

Seeing object intrinsics: shape, texture, and mate-
rial. Drawing inspiration from human perception and
computer graphics, my colleagues and I have built object
appearance models that learn to perceive object intrinsics,
such as shape, texture, andmaterial, from raw visual obser-
vations, and to leverage such information for synthesizing
new objects in 2D and 3D. The core object representa-
tion builds upon a coherent understanding of its intrinsic
properties, in addition to extrinsic properties such as pose.
Our research covers various components of the appear-

ancemodel. On bottom-up recognition, we have developed
a general pipeline for 3D shape reconstruction from a sin-
gle color image (Wu, Wang, et al. 2017; Wu, Xue, et al.
2018) via modeling intrinsic images—depth, surface nor-
mals, and reflectancemaps (Janner et al. 2017) (Figure 2A).
Our research is inspired by the classic study on multi-
stage human visual perception (Marr 1982) and has been
extended to integrating learned priors of 3D shapes (i.e.,
“what shapes look like?”) for more realistic 3D reconstruc-
tions (Wu, Zhang, et al. 2018), to reconstructing object
texture and material beyond geometry (Zhang et al. 2023),
and to tackling cases where the object in the image is not
from the training categories (Zhang et al. 2018).
Complementary to these bottom-up recognition mod-

els, we have also explored learning top-down graphics
engines directly. We proposed 3D generative adversarial
networks and point-voxel diffusion, among the first to
apply generative-adversarial learning and diffusion to 3D
shapes for unconditional shape synthesis (Wu, Zhang,
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AI MAGAZINE 3

F IGURE 2 Learning to see shapes, texture, and physics. (A) Reconstructing 3D shapes from a single color image via 2.5D sketches (Wu,
Wang, et al. 2017; Wu, Zhang, et al. 2018; Zhang et al. 2018; Janner et al. 2017). (B) Generative modeling of 3D shapes and 2D images via a
disentangled representation for object geometry, viewpoint, and texture (Wu, Zhang, et al. 2016; Zhu et al. 2018; Chan et al. 2021; Zhou, Du,
and Wu 2021; Zhang et al. 2023). (C) 3D-aware representations for objects and scenes (Wu, Tenenbaum, and Kohli 2017; Yao et al. 2018; Yu,
Guibas, and Wu 2022; Yu, Agarwala, et al. 2023; Tian et al. 2023; Yu, Guo, et al. 2023). (D) Part-based object representations for its geometry
and physics (Wu, Lim, et al. 2016; Wu, Lu, et al. 2017; Wu et al. 2015; Liu et al. 2018; Xu et al. 2019).

et al. 2016; Zhou, Du, andWu 2021). These papers are influ-
ential;many other researchers have built on them.Wehave
later extended the model as visual object networks (Zhu
et al. 2018) and periodic implicit GANs (pi-GANs) (Chan
et al. 2021), which synthesize object shape and texture
simultaneously, enforcing various consistencies with a dis-
tributed representation for object shape, 2.5D sketches,
viewpoint, and texture (Figure 2B). We have generalized
our models to scenes (Wu, Tenenbaum, and Kohli 2017;
Yao et al. 2018; Yu, Guibas, and Wu 2022; Yu, Agarwala,
et al. 2023), recovering structured scene representations
that not only capture object shape and texture but enable
3D-aware scene manipulation (Figure 2C).
Seeing physics. Beyond object appearance, the intu-

ition of object physics assists humans in scene understand-
ing (Battaglia, Hamrick, and Tenenbaum 2013). We have
developed computational models that learn to infer object
physics directly from visual observations (Wu, Lim, et al.
2016; Wu et al. 2015). Our research on visual intuitive
physics is the first in the computer vision community and
has since led to many follow-up studies (Fragkiadaki et al.
2016; Mottaghi et al. 2016).
The Galileo model (Wu et al. 2015) marries a physics

engine with deep recognition nets to infer physical object
properties (e.g., mass, friction). With an embedded physi-
cal simulator, the Galileo model discovers physical proper-
ties simply by watching objects move in unlabeled videos;
it also predicts how they interact based on the inferred
physical properties. The model was tested on a real-world
video dataset, Physics 101 (Wu, Lim, et al. 2016), of 101
objects that interact in various physical events.
I have also worked on integrating geometry and

physics perception (Figure 2D). For example, in visual
de-animation (VDA) (Wu, Lu, et al. 2017), our model
learns to jointly infer physical world states and simu-
late scene dynamics, integrating both a physics engine
and a graphics engine. In physical primitive decomposi-
tion (PPD) (Liu et al. 2018), we decompose an object into
parts with distinct geometry and physics, by learning to
explain both the object’s appearance and its behaviors in
physical events. In dynamics-augmented neural objects

(DANO) (Le Cleac’h et al. 2023), we enhance objects
parametrized by neural implicit representations with their
physical properties identified from raw observations; we
then use such dynamic objects for future prediction. We
have also extended thesemodels to complex indoor scenes,
exploiting stability for more accurate 3D scene parsing (Du
et al. 2018).
Multimodal perception. Humans see, hear, and

feel, perceiving the world through fusing multisensory
signals. These signals play complementary roles: we
see object shape and texture through vision, hear their
material through sound, and feel their surface details
through touch. In computer science, however, most
recognition models and simulation engines primarily
focus on visual data. Building upon techniques from the
graphics community, we have been building generative
audio–visual engines and using them for cross-modal
perception (Zhang, Li, et al. 2017; Zhang, Wu, et al.
2017): how much do we know about objects from videos,
and how much from audio? Our recent work includes
developing a differentiable simulation model of impact
sounds (Clarke et al. 2021) and building a benchmark for
object impact sound fields (Clarke et al. 2023). Beyond
auditory signals, we have also explored the integration
of tactile signals with vision for better shape perception
and reconstruction (Wang et al. 2018), and the integration
of visual, auditory, and tactile information for robotic
manipulation (Li et al. 2022).
In the past few years, we have also been develop-

ing a large-scale, multimodal, object-centric benchmark,
ObjectFolder (Figure 3). It models themultisensory behav-
iors of both neural and real objects: it first includes 1000
neural objects in the form of implicit neural representa-
tions with simulated multisensory data (Gao et al. 2021,
2022); it also contains the multisensory measurements
for 100 real-world household objects, based on a newly
designed pipeline for collecting 3Dmeshes, videos, impact
sounds, and tactile readings of real-world objects (Gao et al.
2023). ObjectFolder also has a standard benchmark suite of
10 tasks for multisensory object-centric learning, centered
on object recognition, reconstruction, and manipulation
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4 AI MAGAZINE

F IGURE 3 Multimodal perception (Gao et al. 2021, 2022, 2023; Clarke et al. 2021, 2023; Li et al. 2022). Visual (A): We use a scanner, a
turntable, and a lightbox to acquire object geometry and texture. Auditory (B, C): We strike objects at precise points using an impact hammer,
either by hand (B) or by a robot (C), recording the sound with a microphone array on a rotating gantry. The object is resting on a compliant
mesh inside an acoustically treated room. Tactile (D): A robot presses a tactile sensor on the object with GelSight (Yuan, Dong, and Adelson
2017).

F IGURE 4 Physical models for future prediction and control. (A) Modeling visual dynamics allows us to generate multiple possible
future frames from a single image (Xu et al. 2019; Xue et al. 2016). (B) Learned dynamics models support controlling soft robots Hu et al.
(2019) and fluids Deng et al. (2023). (C) They also enable long-term manipulation of deformable objects and liquids (Li, Wu, Tedrake, et al.
2019; Shi et al. 2022, 2023). (D) We have developed a hybrid model that captures object-based dynamics by integrating analytical models and
neural nets. It assists the robot in accomplishing a highly underactuated task: pushing the right disk to the target (green) by only interacting
with the left disk (Ajay et al. 2019, 2018).

with sight, sound, and touch. We have open-sourced both
the datasets and the benchmark suite to catalyze and
enable new research on multisensory object-centric learn-
ing in computer vision, robotics, and beyond (Gao et al.
2023).

PHYSICALMODELS FOR REAL-WORLD
INTERACTIONS

Beyond learning object-centric models from raw observa-
tions by inverting simulation engines, my research also
includes learning to approximate simulation engines (for-
ward models) themselves. Based on target domains and
applications, my colleagues and I have explored building
physical models in various forms—image-based, object-
based, and particle-based; analytical, neural, and hybrid—
and have demonstrated their power in challenging, highly
underactuated control tasks (Figure 4).
Compared with off-the-shelf simulators, a learned

dynamics simulator flexibly adapts to novel environments
and captures stochasticity in scene dynamics. Our visual
dynamics model demonstrates this in the pixel domain,
where it learns to synthesize multiple possible future

frames from a single color image by automatically dis-
covering independent movable parts and their motion
distributions (Xue et al. 2016) (Figure 4A). Our paper was
among the first to consider uncertainty in the area of visual
prediction. We have later extended the model to addi-
tionally capture the hierarchical structure among object
parts (Xu et al. 2019).
Modeling dynamics directly in the pixel space is uni-

versal but challenging due to the entanglement of physics
and graphics; an alternative is to separate perception from
dynamicsmodeling and learn dynamics from object states.
Our work along this line has shown that a model that
learns to approximate object dynamics can be useful for
planning (Janner et al. 2019), generalize to scenarios where
only partial observations are available (Li, Wu, Zhu, et al.
2019), and discover physical object properties without
supervision (Zheng et al. 2018; Le Cleac’h et al. 2023).
We have further extended our model to particle-based
representations so that it can characterize the dynam-
ics of soft robots (Hu et al. 2019), fluids (Deng et al.
2023) (Figure 4B), and scenes with complex interactions
among rigid bodies, deformable shapes, and liquids (Li
et al. 2020; Li, Wu, Tedrake, et al. 2019; Shi et al. 2023)
(Figure 4C).
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AI MAGAZINE 5

We have also explored the idea of learning a hybrid
dynamics model, augmenting analytical physics engines
with neural dynamicsmodels (Ajay et al. 2018) (Figure 4D).
Such a hybrid system achieves the best of both worlds:
it performs better, captures uncertainty in data, learns
efficiently from limited annotations, and generalizes to
novel shapes and materials. The paper was selected as the
Best Paper on Cognitive Robotics at the premier robotics
conference (IROS 2018).
These dynamics models can be used in various con-

trol tasks: they help solve highly underactuated control
problems (pushing disk A, which in turn pushes disk B
to the target position) (Ajay et al. 2019), to control and
co-design soft robots (Hu et al. 2019), to manipulate flu-
ids and rigid bodies on a robot (Li, Wu, Tedrake, et al.
2019), to interact with plasticine to make complex shapes
in multiple steps (Shi et al. 2022, 2023), and to interact and
play games such as Jenga that involve complex frictional
micro-interactions (Fazeli et al. 2018).

STRUCTURED PRIORS FOR
COMMONSENSE REASONING

The physical world is rich but structured: natural objects
and scenes are compositional (scenes are made of objects
which, in turn, are made of parts); they often have
program-like structures (objects are symmetric and made
of evenly spaced repetitive parts). My colleagues and I
have been exploring ways to bridge structured, often sym-
bolic, priors into powerful deep recognition models. In
previous sections, we have seen perception models that
invert simulation engines and physical dynamics models
that approximate simulation engines themselves. Here, we
move one step further to learn the representation priors
these simulation engines have—why they represent the
world in the way they currently are.
A test of these neuro-symbolic representations is

how well they support solving various reasoning tasks
such as analogy making and question answering. Our
work has demonstrated that when combined with deep
visual perception modules, a symbolic reasoning sys-
tem achieves impressive performance on visual reasoning
benchmarks (Yi et al. 2018), outperforming end-to-end
trained neural models. We have also extended it to
jointly learn visual concepts (e.g., colors, shapes) and
their correspondence with words from natural supervi-
sion (question–answer pairs) through curriculum learn-
ing (Mao et al. 2019), without human annotations.
Beyond static images, we have integrated neuro-

symbolic representations with learned object-based
dynamics models for temporal and causal reasoning

on videos. On our newly proposed video reasoning
benchmark, our model performs significantly better in
answering all four types of questions: descriptive (e.g.,
“what color”), explanatory (“what’s responsible for”),
predictive (“what will happen next”), and counterfactual
(“what if”) (Yi et al. 2020; Chen et al. 2021). Similar ideas
have been applied to visual grounding in 3D scenes (Hsu,
Mao, and Wu 2023), human motion understanding (Endo
et al. 2023), and robotic manipulation (Wang et al. 2023).
Learning symbolic structure is closely coupled with pro-

gram synthesis. In particular, our recent work has made
progress on the problem of inferring programs as a novel
representation for shapes (Tian et al. 2019; Deng et al.
2022), scenes (Liu et al. 2019), and human motion (Kulal
et al. 2021, 2022). This marks the start of our exploration of
wiring highly structured, hierarchical priors into learning
representations for physical scene understanding.

NEXT STEPS

With big data, large computing resources, and advanced
learning algorithms, the once separated areas across com-
puter science (vision, learning, symbolic reasoning, NLP,
rule learning and program induction, planning, and con-
trol) have begun to reintegrate.We should now take amore
integrative view of these areas and actively explore their
interactions for a more general AI landscape.
One such direction is to achieve a more fundamen-

tal integration of perception, reasoning, and planning.
Although most computational models have treated them
as disjoint modules, we observe that having them com-
municate with each other facilitates the model design and
leads to better performance (Janner et al. 2019; Veerapa-
neni et al. 2019). For example, AI researchers have been
integrating perception and planning in belief space (Kael-
bling and Lozano-Pérez 2013)—our belief of the partially
observable, uncertain world states. Building upon these
insightful ideas, I would like to explore interactive per-
ception by integrating both classic and modern AI tools:
probabilistic inference for managing uncertainty; causal
and counterfactual reasoning in generative models for
explainability, imagination, and planning; and hierarchi-
cal inference for learning to learn, so knowledge builds
progressively. In addition, discovering the cognitive and
neural basis of perception, reasoning, and planning will be
of significant value to understanding human intelligence.
Another direction is to integrate symbolic priors with

deep representation learning via program synthesis for
concept and structure discovery. Neuro-symbolic methods
enjoy both the recognition power from neural nets and
the combinatorial generalization from symbolic structure;
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therefore, they have great potential in scaling up current
intelligent systems to large-scale, complex physical scenes
in real life, for which pure bottom-up, data-driven mod-
els cannot work well due to the exponentially increasing
complexity. Our research has shown that they can learn to
discover concepts and answer questions using only natu-
ral supervision (question–answer pairs) as humans (Mao
et al. 2019; Yi et al. 2018; Hsu, Mao, and Wu 2023). In the
future, I would like to explore the use of symbolic lan-
guages for knowledge representation and abstraction, and
their integration with deep networks for flexible physical
scene understanding and interaction.
Beyond physical objects and scenes, I want to build

computational models that understand an agent’s goals,
beliefs, intentions, and theory of mind and use such
knowledge for planning and problem-solving, drawing
inspiration from intuitive psychology. While we have been
inferring physical object properties from interactions, can
we also build computational models that, just like 10-
month-old infants (Liu et al. 2017), infer object values in
agents’ beliefs from their behaviors? Research in this direc-
tion would benefit the development of human-like and
human-centered autonomous systems.
More generally, I want to connect computer sciencewith

other disciplines, such as cognitive science, neuroscience,
social science, linguistics, and mechanical engineering.
Research in cognitive science and neuroscience has been
offering intuitions for AI researchers for decades; now, we
are entering a new stage where contemporary research in
intelligent systems or computer science, in general, may
help us better understand human intelligence (Fischer
et al. 2016; Yamins et al. 2014). Our research has suggested
that computational models that combine bottom-up neu-
ral recognition networks and top-down simulation engines
shed light on understanding cognitive and neural pro-
cesses in the brain (Yildirim et al. 2019; Zhang et al. 2016).
Much more work needs to be done in these areas. With
the right integration of probabilistic inference methods,
deep learning, and generative models, we can build more
powerful computational models for both neural activi-
ties and cognitive, behavioral data. The same applies to
developmental psychology. I want to compare and contrast
human and artificial intelligence in understanding core
knowledge—knowledge about object permanence, solidity,
continuity, and containment, and concepts such as grav-
ity and momentum (Spelke 2000). This interdisciplinary
research deepens our understanding of multiple research
areas and suggests future research topics.
We are in a unique and exciting time: the development

of data, hardware, and algorithms (e.g., deep networks,
graphical models, probabilistic programs) has enabled
more flexible and expressive computational models. For
the next decade, I believe building structured foundation

models for machine physical scene understanding, as well
as investigating its connection with perception, reason-
ing, and interaction, will be valuable and essential for
developing computational systems that contribute to broad
fundamental and practical research across disciplines.
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