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Abstract

Human scene understanding involves not just localizing objects,
but also inferring latent attributes that affect how the scene might
unfold, such as the masses of objects within the scene. These
attributes can sometimes only be inferred from the dynamics
of a scene, but people can flexibly integrate this information to
update their inferences. Here we propose a neurally plausible
Efficient Physical Inference model that can generate and update
inferences from videos. This model makes inferences over the
inputs to a generative model of physics and graphics, using
an LSTM based recognition network to efficiently approximate
rational probabilistic conditioning. We find that this model not
only rapidly and accurately recovers latent object information,
but also that its inferences evolve with more information in a
way similar to human judgments. The model provides a testable
hypothesis about the population-level activity in brain regions
underlying physical reasoning.

Keywords: intuitive physics, recurrent recognition networks,
probabilistic simulation engines

Introduction
Scene understanding is not only about recognizing what is
where, but seeing the physics of a scene. From a glance at the
two cuboids in Fig. 1 (left), we expect the metal block on the
right to be heavier than the wooden block on the left. There are
many cases, however, where our visual estimation of object
properties is underdetermined or even misleading (e.g., the
block on the right could be made of styrofoam but covered
by a thin metallic sheet). Humans can infer physical object
properties not only from static appearances, but from dynamic
scenes: seeing the wood cuboid bump into the ‘metal’ one
(Fig. 1, center) and cause it to move rather than stop the wood
block’s motion (Fig. 1, right), we realize our visual estimate of
the objects’ masses should be revised.

Studies of human physical inferences suggest that this pro-
cess is supported by an “intuitive physics engine” (Battaglia,
Hamrick, & Tenenbaum, 2013), which, similar to a video game
engine, allows us to simulate possible ways the world will unfold.
According to this framework, physical scene understanding
amounts to “analysis-by-synthesis”: setting and adjusting the
initial scene configuration (e.g., weights of objects) so that our
simulations match our observations. These studies inspired
several works in AI including attempts to build “neural” physics
engines (Battaglia, Pascanu, Lai, Rezende, et al., 2016) and
jointly modeling system dynamics and visual inputs (Wu, Lu,
Kohli, Freeman, & Tenenbaum, 2017). Despite this progress,
two key questions remain:

1. Dynamic updates: How are objects’ property estimates
updated dynamically as we continuously gather more infor-
mation from the world?

Figure 1: A ‘surprising’ collision. If we observe a wooden block on a
ramp with an iron block at the bottom (left), we expect the iron to stop
the wood upon collision (center ). Seeing the wooden block launch the
iron one (right), lets us update our beliefs about the actual masses of
the two blocks.

2. Mappability: How are such updating processes computed
in the brain?

Here, we present a new computational account of human
intuitive physical scene understanding. Our core idea is to
formulate the problem of physical scene understanding as effi-
cient inference in a generative model. The generative model
is a probabilistic program, wrapping a physics engine to re-
alistically animate a world of objects, and a graphics engine
to render the evolving world states. Latent variables in this
generative model are objects’ substances (masses, frictions),
geometries (shapes), and kinematic properties (positions, ve-
locities, rotations, collisions).

We implement efficient inference with a recognition network
where the network architecture follows the causal structure of
the generative model. Given an unfolding video as input, the
network’s goal is to produce and dynamically update point esti-
mates of the latent variables through time. We use an LSTM
to integrate inference over time. At each time step, the recogni-
tion network updates the state of a single object in the scene
while encoding the visual input using attention to emphasize
the relevant evidence. This joint attention mechanism, or the
binding parameters, allows the model to link visual evidence
to internal object states. We name our model the Efficient
Physical Inference network (EPI).

We evaluate EPI in a basic yet physically rich dynamical
scenario: an object on the ramp slides and collides with an-
other stationary object on the ground. We evaluate EPI as an
inference algorithm by comparing it to a standard inference
procedure for non-linear dynamical systems: an idealized (i.e.
non image-computable) sequential Monte Carlo (SMC) algo-
rithm with limited computational resources (small numbers of
particles). We also compare both algorithms to an ideal ob-
server model with no resource constraints. We find that EPI’s
inferences approximate that of the SMC while being faster.

Although we are not making direct contact to neural data in
this study, we note that EPI is composed of neurally plausible
components (e.g., feedforward networks and RNNs). Each of
its layers provides a testable computational hypothesis about
the neural computation underlying physical reasoning regions
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Figure 2: (A) Schematic of a generative process formalizing formation of dynamic scenes. (B) Schematic of our generative model. Latent
variables are substance, geometry, and kinematics properties of objects in the sensory environment. A physics engine evolves the state of the
objects in time. A graphics engine renders each state. (C) Schematic of the EPI recognition network. Its architecture is designed to match the
causal structure in the generative model. (D) Details of the recognition network.

in the primate brain (Fischer, Mikhael, Tenenbaum, & Kan-
wisher, 2016; Sliwa & Freiwald, 2017). Contrast this to SMC,
where it is less clear how to map a software physics engine or
the proposal-likelihood evaluation cycles to neural computation.

Our main results show EPI’s ability to capture the temporal
dynamics of human subjects’ mass judgments across a broad
range of stimulus conditions. These include conditions where
object appearance and physical properties are intentionally
incongruent, e.g., a light wooden block with the appearance of
an iron block. We show that the EPI network can generalize
to such mismatch stimuli just as humans do, and provides a
highly accurate quantitative account of human dynamic belief
updating behavior. We also find the approximate inference
schemes, both EPI and SMC, account for the human data
better than the ideal observer model.

Efficient Physical Inference (EPI) Network

Generative model: Dynamic scenes can be formalized using
a generative process of physics and graphics (Fig. 2A). We
present an instantiation of this generative model in the ramp
scenario (Fig. 2B). For object ind in the scene, latent variables
consist of the object’s state including its geometry Gind , sub-
stance Sind , and kinematic Kind properties, collectively denoted
as Objind = {Sind ,Gind ,Kind}.

Substance properties S include mass and friction. Each
object is randomly assigned to a substance type (Iron, Brick
& Wood). Density and friction are sampled from mixture dis-
tributions with two components: a normal distribution with the
substance type’s default density and friction parameters as its
mean, and a uniform distribution over entire ranges. The mass
of an object is then the product of its density and volume.

Geometry properties G include a categorical shape type
(Block & Puck) and continuous height, width, and depth pa-
rameters. Kinematic properties K include positions, veloc-
ities, rotations, and collisions across time. The kinematic
state of an object evolves using a 3D physics engine Kt =
π(St−1,Gt−1,Kt−1). A graphics engine is used to render im-
ages at each time step, It = γ(Obj0,Obj1,A) where A denotes
fixed rendering parameters such as viewpoint and lighting.

Given a video, physical scene understanding can be cast as
inference in this generative model.

Pr(Obj0,Obj1|I0:T ,π(·),γ(·)) ∝

Pr(I0:T |Obj0,Obj1,π(·),γ(·))Pr(Obj0,Obj1)δπδγ (1)

Traditionally sampling based approaches have been the infer-
ence method for such intractable posteriors. We present two
such methods with different computational resource limitations
before presenting the EPI recognition network.
Inference using sampling based approaches: These infer-
ence schemes sample from an idealistic form of Eq. 1: They
assume ground truth geometry G and initial kinematics state
K0; given noisy positions and velocities as observations, they
estimate the substance properties, Pr(S0,S1|K0

0:T , K1
0:T ).

The first, an Ideal Observer (IO-MH), represents how a
resource-unconstrained Bayesian observer would perform in-
ference in this generative model. It is an MCMC algorithm
with Metropolis-Hastings updates for S0 and S1. The second,
a Sequential Rational Process (SRP) model is designed to
dynamically update inferences about S0 and S1 as more of
K0 and K1 is observed through time. It is implemented as a
particle filter (an instance of SMC) with resampling and with
occasional replacement from the prior for avoiding degeneracy.

EPI network
Network architecture: The EPI network aims to compile se-
quential inference in the generative model in a recurrent latent
variable recognition network. The model’s overall architecture
is dictated by the generative model with video frames as inputs
and latent variables as targets (Fig. 2C).

The model consists of four components (Fig. 2D). First is
encoding the images, which takes as input a sequence of
images (a video; I0:T ). At each time step t, the model encodes
image It using a combination of f enc

I , the top convolutional
layer activations (TCL) of the Imagenet pre-trained Alexnet,
and a 13×13 soft-max attention map for a weighted sum of
the TCL activity, reducing it from a tensor of size 256×13×13
to a vector of size 256.

Second is the encoding of objects and their relations follow-
ing the formulations in object-based neural physics engines
(e.g. Battaglia et al., 2016). We encode the state of the ob-
ject to be updated, Objind using f enc

Obj , a multilayer perceptron
(MLP). We encode their relationship using f enc

Rel , an MLP, as
f enc
Rel ( f enc

Obj (Objind), f enc
Obj (Obj−ind)).



Figure 3: EPI inference trace. Changes in attributes over time for the
ramp object (blue) and ground object (green), with model inferences
(dashed lines). The orange triangle denotes the frame of collision.

Table 1: Model Evaluations

Model Log-likelihood Time (s)

EPI −6.33(5.6) 0.21(0.11)
SRP −2.99(2.67) 0.36(0.05)
Ideal observer (MH) −1.04(0.06) 120(49.5)

Third, the model recurrently updates its state using an LSTM
which takes as input concatenation of encoded image and
encoded object and its relation. Fourth, the model updates
the state of object ind, {Sind

t ,Gind
t ,Kind

t }, using MLP decoders
f dec
S , f dec

G , f dec
K . These decoders takes as input the output of

the LSTM. At each time step, the network also predicts the
binding parameters, Bt+1 using f dec

B . This decoder consists of
two independent MLPs, each taking as input the output of the
LSTM, and predicting the binding parameters: which object’s
state to update at the next time step, indt+1, and where in the
image to attend for its relevant evidence, αt+1.
Objective functions: We minimize two objectives. First, we
minimize the distance between predicted and true latent vari-
ables for each object at each time point, dt,0 and dt,1, using a
smooth L1 loss. Second, we minimize a simple cross-entropy
loss that allows the model to learn to predict which object’s
state it should update based on the LSTM’s output without hav-
ing dt,0 and dt,1 available during test time. We formulate this
objective as Lind = ∑

T
t=0 ∑ indt log( ˆindt), where indt is one-hot

encoding of argmaxi{dt,i} and ˆindt is an output of f dec
B .

Training data: The model is trained using stochastic gradient
descent based on samples drawn from the generative model
in the style of Helmholtz machines without requiring labeled
data. An example trace on a test item is shown in Fig. 3.
Speed and accuracy comparisons: We compared mod-
els’ wall-clock execution time and their average log-likelihood
scores of predicting ground-truth positions and velocities on a
total of 168 trials (used in the behavioral experiment). We find
EPI is on the accuracy-efficiency trade-off frontier, approaching
the accuracy of IO-MH while running faster than SRP (Table 1).

Testing models as accounts of human behavior
We recruited 160 participants from Amazon’s Mechanical Turk,
who were each compensated $2.50.

To match human judgments to model performance, we
asked participants to view a video of an object sliding down
a ramp and colliding with another object on the ground (see
Figure 4), until the ‘lights were turned off’ and the screen went
dark. Based on this observation, participants were asked to
judge whether the object on the ramp was lighter or heavier
than the object on the ground. This judgment was registered
using a sliding scale from “ground object much heavier” on
the left to “ramp object much heavier” on the right, with “same
weight” delineating the midpoint.

The experiment began with instructions to introduce partic-
ipants to the task and response methodology, followed by a
comprehension check and five example stimuli (identical for
all participants) for familiarization. Participants then observed
their set of 120 stimuli in a randomized order.
Stimuli: Stimuli were produced using the generative model as
used for the training set with the following exceptions. Unlike
the model training stimuli, the ground object was always fixed
to be a Brick Block of consistent volume, density, and posi-
tion. Participants were notified during the instructions that the
ground object would not change.

We used 168 scenarios for this experiment. Of these scenar-
ios, 120 were created such that the friction and density of the
ramp object were set by the substance type using the means
of the training distributions. The remaining 48 scenarios were
created with density drawn from either a ‘high’ or ‘low’ density
distribution. Each of these scenes with incongruent densities
(‘matched-incongruent’) was matched to one of the scenes
with congruent densities (‘matched-congruent’) such that the
ramp object’s visual texture, size, shape, and initial position
were identical. The remaining 72 congruent scenarios (‘normal-
congruent’) were used to ensure that incongruent scenes were
surprising to participants.

To investigate how human mass judgments evolve over time,
we made four videos from each scenario, differing in when the
screen went dark: one turning black the frame before before
the collision of the two objects (‘pre-collision’), one changing
200ms after the collision (‘post-collision’), one cutting halfway
between the time when the collision occurred and when all
motion would stop (‘halfway’), and one that ended 200ms after
both objects had come to rest (‘full’).

Trials were counterbalanced such that each participant only
observed one video length from each of the matched trial pairs,
while keeping a constant proportion of material types, shapes,
and video lengths within each condition. Therefore, participants
each observed 72 ‘normal-congruent’, 24 ‘matched-congruent’,
and 24 ‘matched-incongruent’ trials, so that the incongruent
trials were only 20% of the total trials.
Empirical results: Participants were able to recover the rel-
ative weight of objects under normal conditions; across all
congruent trials, average ratings were highly correlated with
the true log-mass-ratio between the ramp and ground objects
(r = 0.74, t(478)= 24, p≈ 0). Participants were also sensitive
to the dynamics of the scene; excluding the pre-collision videos
(where we expect no difference), the difference between hu-
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Figure 4: Three matched trials with human and model judgments. The initial image along with the end state for both the congruent and
incongruent versions are displayed on top, with the ramp and ground objects magnified. Plots show average human (dots, with bars representing
the 95% CI) and model (dashed line) relative weight ratings for each time point. Both the EPI and SRP models captured evolving human
judgments, while the MH model typically shifted its judgments suddenly upon observing a collision.

man ratings in each matched trial was well correlated with the
actual difference in log-masses of the congruent and incongru-
ent matched objects (r = 0.93, t(46) = 17.6, p≈ 0). However,
the difference between ratings for matched trials was not static
over time (post: 15.1, half: 13.4, full: 19.7, F(2,94) = 16.4,
p = 7.9 ∗ 10−7). This suggests that people incrementally in-
tegrate information about the dynamics of a scene to update
their physical beliefs.
Model results: Across all scenes, participants’ ratings could
be predicted well by the EPI model (r = 0.92), the SRP model
(r = 0.93), and IO-MH (r = 0.88), suggesting that all models
are at least grossly approximating human behavior.

Because human weight ratings are correlated with the log-
mass-ratios between the ramp and ground objects, we extrap-
olate “model ratings” as linear functions of the log-mass-ratio
inferred by each model, with the mapping fit to the normal-
congruent trials. On these trials, the SRP model explained
participants’ ratings best (RMSE=5.90, 95% CI=[5.40,6.35]),
followed closely by both the EPI model (RMSE=6.38,
95% CI=[5.79,6.97]) and IO-MH model (RMSE=6.48, 95%
CI=[6.00,7.00]). However, when these ratings are extended
to the incongruent trials, the EPI model generalized best to
human ratings (RMSE=8.85, 95% CI=[7.83,9.63]), followed by
the SRP model (RMSE=9.81, 95% CI=[9.05,10.7]) and IO-MH
model (RMSE=12.3, 95% CI=[11.0,14.1]).

A good model should also update it’s beliefs at a similar
rate as people. We compared the difference in human ratings
across matched trials at each time point to the difference in
model predictions of log-mass-ratios at that point. If the model
is updating at the same rate as people, the linear slope between
these measures should remain constant across time. There is
no evidence of difference across time points for the EPI model
(F(4,138) = 0.35, p = 0.84) and only limited evidence for the

SRP model (F(4,138) = 2.01, p = 0.096), but clear evidence
that the IO-MH model differs (F(4,138) = 3.56, p = 0.010).

Together, this suggests that the EPI model and the rational
process model it approximates can capture how human weight
ratings change for surprising events over time, whereas a
computationally-unbounded ideal observer model cannot.

Discussion
We presented the EPI network which addresses the problem
of physical reasoning with a recurrent recognition network in
a generative model of physics and graphics. We found that
EPI is on par or exceeds sampling based idealistic inference
schemes in accuracy and efficiency. The model gave a highly
accurate quantitative account of the dynamics of human mass
judgments, supporting efficient inference as a mechanism un-
derlying human physical scene understanding. Layers of the
model provide a hypothesis about the neural computations
underlying physical reasoning.
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