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1. Proof for Theorems
Now we will do discriminative learning with the presence of hidden variables. Our step is similar to standard EM[3] while

the primary difference is that we are given labels Y = {y1, . . . , yn} in addition to observations X = {x1, . . . , xn}, and
we want to estimate the model θ that minimizes the negative log-likelihood function L(θ;Y,X) = − log Pr(Y |X; θ). We
proceed by integrating H out:

Theorem 1. The discriminative expectation maximization (DiscEM) algorithm optimizes the training set log likelihood
L(θ;Y,X) w.r.t. model parameters θ in the presence of hidden variable H , via:

d

dθ
L(θ;Y,X) = EH∼Pr(H|Y,X;θ)

d

dθ
L(θ;Y,X,H) (1)

where L(θ;Y,X,H) = − log Pr(Y,H|X; θ). Notice that Pr(H|Y,X; θ) = Pr(Y,H|X;θ)
Pr(Y |X;θ) and X , Y are given.
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(2)

The general form of DiscEM is similar to the standard EM. We iteratively improve an initial estimate θ0 with successively
better estimates θ1, θ2, ..., and so on until convergence. Each phase r consists of two steps:

• E step: Compute Pr(H|Y,X; θ) via previous estimate θr.

• M step: Update θr+1 by minimizing L(θ;Y,X) using eqn.(1).
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Note that in the above formulation, parameter θ can be purely discriminative, i.e. they are parameters of classifiers. In this
way, DiscEM can take the advantages of discriminative learning algorithms. This contracts DiscEM to other conditional-
EM frameworks[8, 13], where the task is to learn generative parameters through a discriminative objective. Compared with
standard supervised algorithms, DiscEM can better handle hidden variables and embrace the weakly supervised learning
setting.

Assuming all the data are conditionally independent, we could further derive as:

d

dθ
L(θ;Y,X) = − d

dθ
log Pr(Y |X; θ) = − d

dθ

n∑
i=1

log Pr(yi|xi; θ) =
n∑
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Ehi∼Pr(hi|yi,xi;θ)[−
d

dθ
log Pr(yi, hi|xi; θ)]. (3)

Then we give the main insight connecting MIL-Boost[16] and DiscEM:

Theorem 2. When the instance-level model (5) and the bag-level model (7) are used, MIL-Boost’s update rule (8) is equiva-
lent to DiscEM, which reads:
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(4)

Before the proof, we first recall MIL-Boost[16]. Standard boosting [7, 10] assumes an additive model on instance-level
decisions: hij = h(xij) where h(xij) =

∑
t λtht(xij) is a weighted vote of weak classifiers ht : X → Y . Assuming that

yij ∈ Y is the hidden instance label, its probability as positive is given by:

pij = Pr(yij = 1|xij ;h) =
1

1 + exp (−hij)
. (5)

The bag-level probability is computed via a Noisy-OR (NOR) model:

pi = Pr(yi = 1|xi;h) = 1−
m∏
j=1

(1− pij). (6)

Since the bag label is given in the training set, we can optimize the negative log-likelihood function:

LMIL = −
n∑
i=1

(1(yi = 1) log pi + 1(yi = −1) log (1− pi)) (7)

by greedy search for ht over a weak classifier candidate pool, followed by a line search for λt. 1(·) is an indicator function.
According to the AnyBoost[10] framework, the weight wij on each instance xij is updated as:
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(8)

After we review the formulation of MIL-Boost[16], we show the proof of Theorem 2.

Proof. Recall that the data is a set of bags X = {x1, . . . , xn}, where each bag Xi contains a set of instances {xi1, . . . , xim}.
Label yi is given for bag xi while yij is hidden variable for the instance xij . We denote the Hi = {yi1, . . . , yim} as the
hidden variables for bag xi and HI = {H1, . . . ,Hn} as all the instance-level hidden variables. For the negative bags, each
instance xij is known to be negative; for the positive bags, at least one instance is positive. In other words, given yi = −1, we
know yij = −1 for every j. We assume instances in a bag are independent. For shorthand we write p(yij) = Pr(yij |xij ; θ)
and pij = p(yij = 1).

Thus, for negative bags we know yij = −1. After some rearrangement, it becomes:
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Next we derive the expression for positive bags. The hidden variables Hi are conditionally dependent given yi, but
otherwise we assume they are independent, i.e.Pr(Hi|xi; θ) =

∏m
j=1 Pr(yij |xij ; θ). We observe that Pr(Hi = −1, yi =

1|xi; θ) = 0 (the event is impossible) and Pr(Hi, yi = 1|xi; θ) = Pr(Hi|xi; θ) for all Hi 6= −1 (If Hi 6= −1 we then know
yi = 1). This leads to:
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(10)

In the above we use the NOR model (eqn.(7)) in MIL-Boost[16]: pi = Pr(yi = 1|xi; θ) = 1−
∏m
j=1(1− pij). We now

expand eqn.(3) for positive bags:
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(11)

Based on eqn.(9) and eqn.(11), we prove the Theorem 2 for both negative bags and positive bags.

The above DiscEM formulation of MIL-Boost partly explains its success. However, since MIL-Boost combines weak
classifiers, which can not easily attain the optimum in the M step, it has to incorporate a gradient descent strategy in the func-
tion space [10]. When strong classifiers (such as SVM or Boosting itself) are available, we can directly employ the DiscEM
formulation, i.e.. alternating between E step (applying a trained classifier to obtain instance-level probability estimation) and
M step (train a new classifier based on the estimation), without retaining history information.



2. More Experimental Results
We show more experimental results, in the similar organization of experiment section in the paper.

2.1. Simultaneous categorization and localization

In addition to the purity measurement used in the paper (Table 1), we also compare categorization performance results on
two additional metrics. Results show that our approach bMCL consistently outperforms other methods by a large margin.

Clustering accuracy is widely used in previous clustering algorithms [17, 21] and in multiple instance clustering meth-
ods [20, 18, 19] to evaluate the clustering performance. Comparison results are reported in Table 1.

Normalized Mutual Information(NMI) is a symmetric measure to quantify the statistical information shared between
two distributions[15]. It is also used to evaluate the clustering performance in previous multiple instance clustering meth-
ods [20, 18, 19]. Comparison results are reported in Table 2.

bMCL SD M3IC BAMIC UnSL
SIVAL1 95.3 78.7 39.3 37.7 25.3
SIVAL2 84.0 65.7 38.7 33.3 34.0
SIVAL3 74.7 62.7 37.0 38.7 26.0
SIVAL4 94.0 86.0 33.0 37.7 26.3
SIVAL5 75.3 70.3 35.3 36.7 23.3

CC 73.9 63.5 38.2 46.1 53.3
3D1 81.1 64.0 46.0 43.2 34.7
3D2 78.4 76.6 52.3 51.4 35.0

Table 1: Categorization results measured by the mean clustering accuracy. We compare bMCL with recent MIC approaches
M3IC[18], BAMIC[20], one state-of-the-art unsupervised discovery method, UnSL[9] and SD (saliency detection baseline),
more reasonable than [12].

bMCL SD M3IC BAMIC UnSL
SIVAL1 89.9 72.7 11.4 12.4 10.8
SIVAL2 73.2 57.3 10.1 5.8 19.1
SIVAL3 64.9 42.4 8.7 11.3 6.1
SIVAL4 87.2 75.4 7.4 13.3 10.6
SIVAL5 61.4 52.3 8.3 9.1 11.1

CC 77.3 59.7 15.8 23.0 59.7
3D1 69.7 52.3 20.3 15.4 23.6
3D2 87.9 75.8 22.4 25.9 29.4

Table 2: Categorization results measured by the mean Normalized Mutual Information (NMI). We compare bMCL with re-
cent MIC approaches M3IC[18], BAMIC[20], one state-of-the-art unsupervised discovery method, UnSL[9] and SD (saliency
detection baseline), more reasonable than [12].



We show illustrative results from a few object classes in Figure 1, 2, and 3. See the paper (Section 6.1 and Figure 3) for
more discussions regarding such results. Please notice that MIC methods (M3IC[18] and BAMIC[20]) cannot perform the
object localization.

Figure 1: Illustrative categorization results of four methods in an object class from 3D object category dataset [14]. From top
to down: bMCL, M3IC [18], BAMIC [20] and UnSL [9]. In bMCL, the yellow rectangle is the localized object and the white
rectangle is the most salient window computed by [6]. In UnSL, the learned object keypoints are overlayed (red points).



Figure 2: Illustrative categorization results of four methods in an object class from SIVAL dataset [11]. From top to down:
bMCL, M3IC [18], BAMIC [20] and UnSL [9]. In bMCL, the yellow rectangle is the localized object and the white rectangle
is the most salient window computed by [6]. In UnSL, the learned object keypoints are overlayed (red points).



Figure 3: Illustrative categorization results of four methods in an object class from CMU-Cornell iCoseg dataset [1]. From
top to down: bMCL, M3IC [18], BAMIC [20] and UnSL [9]. In bMCL, the yellow rectangle is the localized object and
the white rectangle is the most salient window computed by [6]. In UnSL, the learned object keypoints are overlayed (red
points).



2.2. Detecting novel objects using learned detectors

Figure 4 shows object detection results using learned object detectors in bMCL.

(a) SIVAL dataset

(b) 3D object category dataset

(c) CMU-Cornell iCoseg dataset

Figure 4: Object detection results using learned object detectors. Each color represents an object class.



2.3. Co-saliency

Figure 5 illustrates the co-saliency results of bMCL and the results of two state-of-the-art saliency methods [2, 6] on
SIVAL dataset[11].

Figure 5: bMCL’s co-saliency results and results of two state-of-the-art saliency methods. Red rectangles: bMCL co-saliency
results. Black rectangles: results obtained by [2]. White rectangles: results obtained by [6]. SIVAL[11] categories from top
to down: stripednotebook, dataminingbook, candlewithholder, bluescrunge, apple.



2.4. Weakly supervised learning with a single object class

Figure 6 and 7 show the localization results on PASCAL VOC 07[4] and PASCAL VOC 06[5] classes:

(a) aeroplane

(b) horse

(c) sofa

(d) train

(e) motorbike

Figure 6: Red rectangles: object localization results of bMCL with a single object class on challenging PASCAL VOC 07[4].



(a) cow

(b) car

Figure 7: Red rectangles: object localization results of bMCL with a single object class on challenging PASCAL VOC 06[5].



3. Datasets
We use the SIVAL dataset[11], CMU-Cornell iCoseg dataset [1], and 3D object category dataset [14] in the multi-class

object discovery experiment. Table 3 shows the details of each dataset.

Table 3: Experiment names, dataset names, used categories, and the numbers of images.

Exp Dataset Classes Size

SIVAL1 SIVAL

ajaxorange 60
checkeredscarf 60

bluescrunge 60
glazedwoodpot 60

juliespot 60

SIVAL2 SIVAL

dirtyworkgloves 60
greenteabox 60
goldmedal 60

smileyfacedoll 60
spritecan 60

SIVAL3 SIVAL

cardboardbox 60
feltflowerrug 60

stripednotebook 60
wd40can 60

woodrollingpin 60

SIVAL4 SIVAL

apple 60
candlewithholder 60
fabricsoftenerbox 60

rapbook 60
translucentbowl 60

SIVAL5 SIVAL

banana 60
cokecan 60

dataminingbook 60
dirtyrunningshoe 60

largespoon 60

CC CMU-Cornell iCoseg

025 1 12
025 2 39
026 22
032 19
041 25

3D1 3D Object Category

cellphone 91 24
head 9 24
iron 7 24

monitor 4 15
shoe 1 24

3D2 3D Object Category

bicycle 9 24
car 8 16

mouse 8 23
stapler 5 24

toaster 10 24
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